772

[8] P R. Mclsaac, “Symmetry-induced modal characteristics of uniform
waveguides—I; Summary of results, II—Theory,” IEEE Trans. Micro-
wave Theory Tech., vol. MTT-24, pp. 421-433, May 1975.

[9] I Stalzer, M. E. Greenman, and F. G. Willwerth, “Modes of crossed

rectangular waveguides,” IEEE Trans. Antennas Propagat., vol. AP-24,

pp- 220-223, Mar. 1976.

T. Moreno, Microwave Transnussion Design Data.

1958, pp 69-72.

[10] New York: Dover,

The Resonant Frequency of Rectangular Interdigital
Filter Elements

J. H. CLOETE, MEMBER, IEEE

Abstract — A procedure is given for the computation of the resonant
frequency of loosely coupled interdigital resonators with rectangular cross
section. The procedure is based on the use of Getsinger’s fringing capaci-
tance data [1]. The accuracy of the method was verified experimentally and
found to be approximately 1 percent for a 2-percent bandwidth interdigital
linear-phase filter.

I. INTRODUCTION

Certain microwave structures, such as interdigital filters, are
constructed using an array of parallel coupled rectangular cross-
sectional resonators [1]. The side view of an interdigital resonator
is shown in Fig. 1 and a plan view in Fig. 2. The geometry of the
resonator end is shown in Fig. 3. The resonator has width w,
thickness ¢, and length /”. It is symmetrically enclosed in a cavity
of length [, formed by two parallel plates with ground plane
spacing b. The cavity is filled with a homogeneous dielectric of
relative permittivity €,. One end of the resonator is short circuited
by the vertical wall of the cavity, while the open end is separated
from the other vertical wall by a gap of length g.

It is assumed that only the TEM mode propagates, and that
the interdigital resonator can be represented by the equivalent
circuit of Fig. 4 where Z, is the characteristic impedance of the
rectangular cross-sectional resonator at the center frequency, and
C, is a lumped capacitance due to the gap. Z, is determined by
the cross-sectional dimensions, w, ¢, and b, and the spacing of
adjacent resonators. In practice, once w, ¢, and b have been
selected, the problem in resonator design is to find the gap length
g, which yields the correct gap capacitance C,, for a specified
resonant frequency f;.

The problem of computing the gap capacitance has been
addressed by Nicholson [2] and Khandelwal [3]. Nicholson’s
procedure is for circular cross-sectional resonators. Khandelwal’s
more elaborate procedure is useful for general cross sections.
Incidentally, Khandelwal’s procedure for computing the fringing
capacitance between the resonator tip and the end, top, and
bottom plates [3, fig. 2] is incorrect because of the addition of
2CY, to 2¢4,. Getsinger’s odd-mode capacitance 2y, is the total
fringing capacitance to ground, and includes the effect of top and
bottom plates as well as the end plate [1, fig. 6(a)].

The procedure described here is applicable to loosely coupled
resonators of rectangular cross section, is simple to use, and has
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Fig. 4. Resonator equivalent circuit.

given good results in the design of a narrow-band interdigital
linear-phase filter.
II. THE GAP CAPACITANCE
The cavity length is

I=Xo/(4/e,) (1)

where A, is the free-space wavelength at the desired resonant
frequency f,.
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At resonance, the admittance at the node in Fig. 4 is zero.
Inspection of the equivalent circuit shows that the resonance
condition is satisfied when

27fCyl-r=1/{ Zotan Quf (1= 8)/0)}p=s, (D)

where v = c/‘/g is the relative velocity of propagation in the
medium.

Equation (2) can be solved graphically or numerically for the
gap length g if the gap capacitance C, can be expressed as a
function of g. The gap capacitance is a func’uon of the geometry
shown in Fig. 3. As mentioned, the ground plane spacing b, the
bar width w, and the thickness ¢, are determined by the desired
characteristic impedance Z,. When these parameters have been
selected, the gap width g is the variable which determines the
gap capacitance C,, and thus the resonant frequency f,. The gap
capacitance can be expressed as

C,=Cr+Cyp. 3)

C, is defined as the capacitance in the gap region I formed by the
planes z =0, z = w, x = 0, the vertical wall (x = g), the top plate,
and the bottom plate. C;; is the capacitance in the remaining gap
region. C; is given exactly by Getsinger’s odd-mode fringing
capacitance per unit length C/,, as

C,=2wC/,(2g/b,t/b). 4

In contrast to C,, which is composed of the capacitances due to
the two horizontal edges BC and AD plus the parallel plate
capacitance due to the resonator’s face, C;; is composed of the
capacitances per unit length due to the vertical edges 4B and CD,
namely C7, , and C, , and Cp, the capacitance due to each of the
four corners. Thus

Cor=1(Go,+ G, 4G )
In principle, the vertical edge capacitances Cy, , and ¢y, can be
found as follows for an interdigital filter. For an end resonator,
as depicted in Fig. 2, one of the vertical edges will be adjacent to
a vertical electric wall due to the cavity side wall, and the
appropriate vertical edge fringing capacitance per unit length is
given exactly in terms of Getsinger’s odd-mode capacitance as

Cl=C/,(28/(25 +w),w/(2s + w))—ew—/2— (6)

where s is the distance from the resonator edge to the end wall,
and w the resonator width. The second term is the parallel plate
capacitance due to the half of the resonator face associated with
the vertical edge, and must be subtracted from Cy, since the face
capacitance is included in (4) for C;.

For the other vertical edge, the vertical boundary condition is
defined by the physical spacing and electric excitation of the
adjacent resonator. In the equivalent circuit of an interdigital
filter, all resonators and unit elements are one quarter-wavelength
long at the center frequency and consequently the voltages on
adjacent resonators have phase difference ¢ = #/2 at the center
frequency. Therefore, the vertical boundary is neither an electric
nor a magnetic wall and the resulting fringing capacitance must
be found by decomposing the excitation of the two resonators
into the even mode ¢ =0, which results in a magnetic wall
halfway between the resonators, and the odd mode ¢ = o, which
results in an electric wall halfway between the resonators, then
finding the corresponding fringing capacitances C/,, and (7, and
finally combining them appropriately. Using this approach, the
vertical edge fringing capacitance per unit length at the center
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TABLE I
THE THEORETICAL AND EXPERIMENTAL RESONANT FREQUENCIES
OF AN INTERDIGITAL RESONATOR
CI/e Cu/e Cg/e fo (MHz) Biﬁzzz
() {mr) {mm) (mm) Theo= | Measus %
ry red
3.0 28.2 |8.8 37.0 ] 1445 | 1430 1%
4.5 2t.1 | 7.5 28.6 | 1522 | 1510 0.8%
b=15mm t=6mm t/b=0.4mm £=50mm
w=8.8mm pi)=p,=p=17mm er=1 ZO=SOQ
frequency ¢ = 7/2 can be expressed as
1
=5 {Gm(28/(p+w),w/(p+w))
w/2
+Go2g/(p+w),w/(p+w))} —e==. ()

In this expression Cj, is Getsinger’s odd-mode fringing capaci-
tance per unit length from the vertical edge and associated half of
the resonator face and arises when ¢ =#. Note that p is the
edge-to-edge spacing between adjacent resonators. C/,, is the
fringing capacitance for even-mode excitation ¢ = 0 of the adja-
cent resonators and no straightforward method for obtaining this
capacitance appears to have been published, although Cohn’s
data [4] for semi-infinite coplanar plates could possibly be
adapted.

The purpose of the paper is to present a simple method, yet
sufficiently accurate for practical filter design, of estimating the
gap spacing g for a particular center frequency. Accordingly, the
following approximations are proposed to simplify computation
of Cy;. Firstly, that the corner capacitances in (5) are negligible,
thus

®

Secondly, that C,, is approximately equal to C, in (7), in which
case

G.=0.

Gu=Gi28/(p+m)w/(p+w) =2 ()
for a vertical edge adjacent to another resonator. The second
approximation can be justified for loosely coupled resonators by
the intuitive argument that the end wall will play the dominant
role in the gap field distribution, whereas the distant electric or
magnetic walls will play a relatively insignificant role. Under
these assumptions, it follows from (3)—(9) that the gap capaci-
tance for an end resonator is approximated by

C,=2wC/,(28/b,t/b)+1C;,(2g/(2s + w),w/(25s + w))

G, 28/ (p W) w/(p 4 W)= (10)

with the symbols defined in Figs. 1 and 2.
Similarly, for a resonator located between two adjacent resona-
tors, the gap capacitance is approximated by

C,=2wC/,(28/b,1/b)+1C/,(28/(p1+ W), w/(p1+w))
+1G,(28/(p2+w),w/(ps + W)=y ()

where p, and p, are the inter-conductor spacings associated with
each of the vertical edges.
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Because a simple, closed-form expression for C/, as a function
of gap length g is not available, the value of g which satisfies (2)
has to be found iteratively as follows. For a particular value of g,
the odd-mode fringing capacitances C/,, which occur in (10) or
(11), are found from Getsinger’s Fig. 4, and the corresponding
gap capacitance C,, calculated. Next, the frequency f;, which
satisfies (2), is found graphically or numerically. The process is
repeated to produce a graph of resonant frequency f, as a
function of gap length g. The value of g which corresponds to the
desired resonant frequency can then be found from the graph.

111

The validity of the assumptions and approximations in the
procedure have been tested for a resonator located between two
adjacent resonators, in a 2-percent bandwidth interdigital linear-
phase filter of degree 6. The measured resonant frequency was
compared to the theoretical frequency, computed using (11), for
two gap lengths and Table I shows that good agreement was
obtained between theory and experiment.

EXPERIMENTAL RESULTS

IV. CoNCLUSION

A simple procedure has been presented for computing the gap
width of the loosely coupled rectangular cross-sectional interdig-
ital resonator to obtain a specified resonant frequency. The
method uses a simple formula for the gap capacitance of the
resonator, based on Getsinger’s odd-mode fringing capacitance
data [1].

Experimental results suggest that the accuracy of the method is
of the order 1 percent. From Table I it is observed that the
theoretical resonant frequency is higher than the measured
frequency, which indicates that the theoretical gap capacitance C,
is less than the actual capacitance. This could imply that the
corner capacitances are not negligible, as assumed in approxima-
tion (8).

The technique is expected to give best results for structures
that use loosely coupled bars, such as narrow-band filters. Tightly
coupled bars would have different even- and odd-mode fringing
capacitances, thus invalidating approximation (9). However, the
procedure should be adequate for most practical filter designs,
since tightly coupled bars are usually associated with wide-band
filters which are relatively insensitive to deviations from the ideal
circuit element values. A practical resonator design approach is to
design the gap width so that the theoretical resonant frequency is
1-2 percent higher than the desired frequency, and to provide a
capacitive tuning screw at the gap. The gap width should be
slightly larger than required when the tuning screw is flush with
the cavity wall. Therefore, the resonant frequency can be reduced
to the desired value by introducing the tuning screw into the gap,
thus reducing the effective gap width and increasing the gap
capacitance.
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A Design Method for Noncommensurate Broad-Band
Matching Networks

D. A. E. BLOMFIELD, A. G. WILLIAMSON, MEMBER, IEEE,
AND B. EGAN, MEMBER, IEEE

Abstract —A simple design method for broad-band ladder network im-
pedance transformers having noncommensurate section lengths and pre-
dictable passband response is presented. Limitations on section impedances
imposed by constructional constraints are more easily met than with
commensurate networks, and harmonically related passbands are largely
avoided. An example is presented.

I. INTRODUCTION

The short-step impedance transformer [1] and other broad-band
transmission-line networks based on rational insertion loss func-
tions employ commensurate (equal) element length sections. As a
consequence of this constraint, the frequency response is highly
periodic. Moreover, having specified the desired frequency re-
sponse, overall network length and circuit topology (i.e., number
of series/shunt elements etc.), the designer has little flexibility
with the range of element characteristic impedances required.

For example, in a particular application a designer might
consider the use of a series-cascaded commensurate network
because of its relative design and constructional simplicity. Hav-
ing specified the passband response and overall network length,
the minimum number of sections needed and thereafter the
section impedances can be determined. Because of the short
element lengths, a wide range of section impedances usually
results. The designer must then determine whether such a design
can be realized in practice, in the transmission-line type desired.
(A typical range feasible in microstrip, for example, is 20-110 £2,
while in slotline 55-300 &, or coax 10-100 £.) If the design is not
practical, then using commensurate elements, only a network of
greater complexity and/or length will provide the desired pass-
band performance.

On the other hand, noncommensurate networks have the
advantage of allowing greater design flexibility because the con-
straint that all elements have the same electrical length is re-
moved. A further advantage of such designs is that the periodic
recurrence of higher order passbands is largely avoided. However,
the circuit transfer function can no longer be described in terms
of rational functions. To date, no general theory has been pre-
sented for the synthesis of noncommensurate circuits with pre-
scribed gain functions.

In this paper, a design procedure is outlined enabling a non-
commensurate network to be derived from a commensurate pro-
totype. The procedure involves the use of a transformation which
keeps the fundamental passband frequency response of the de-
rived noncommensurate circuit almost identical to that of the
commensurate prototype. This is achieved while providing the
designer with greater flexibility in the choice of element imped-
ance levels.

II. DESIGN PROCEDURE

Having considered the conventional commensurate design and
found it to be unsuitable, a noncommensurate network may be
derived by considering pairs of sections of the commensurate
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