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The Resonant Frequency of Rectangular Interdigital

Filter Elements

J. H. CLOETE, MEMBER, IEEE

Abstract —A procedure is given for the computation of the resonant

frequency of loosely coupled interdigitaf resonators with rectangular cross

section. The procedure is based on the use of Getsinger’s fringing capaci-

tance data [1]. The accuracy of the method was verified experimentally and

fonnd to be approximately 1 percent for a 2-percent bandwidth interdigital

linear-phase filter.

I. INTRODUCTION

Certain microwave structures, such as interdigital filters, are

constructed using an array of parallel coupled rectangular cross-

sectional resonators [1]. The side view of an interdigital resonator

is shown in Fig. 1 and a plan view in Fig. 2. The geometry of the

resonator end is shown in Fig. 3. The resonator has width w,

thickness t’, and length 1’. It is symmetrically enclosed in a cavity

of length 1, formed by two parallel plates with ground plane

spacing b. The cavity is filled with a homogeneous dielectric of

relative permittivity c,. One end of the resonator is short circuited

by the vertical wall of the cavity, while the open end is separated

from the other vertical wall by a gap of length g.

It is assumed that only the TEM mode propagates, and that

the interdigital resonator can be represented by the equivalent

circuit of Fig. 4 where ZO is the characteristic impedance of the

rectangular cross-sectional resonator at the center frequency, and

Cg is a lumped capacitance due to the gap. ZO is determined by

the cross-sectional dimensions, w, t, and b, and the spacing of

adj scent resonators. In practice, once w, t, and b have been

selected, the problem in resonator design is to find the gap length

g, which yields the correct gap capacitance Cg, for a specified

resonant frequency f..
The problem of computing the gap capacitance has been

addressed by Nicholson [2] and Khandelwal [3]. Nicholson’s

procedure is for circular cross-sectional resonators. Khartdelwal’s

more elaborate procedure is useful for general cross sections.

Incidentally, Khaudelwal’s procedure for computing the fringing

capacitance between the resonator tip and the end, top, and

bottom plates [3, fig. 2] is incorrect because of the addition of

2c;, to 2C;0. Getsinger’s odd-mode capacitance 2C~0 is the total

fringing capacitance to ground, and includes the effect of top and

bottom plates as well as the end plate [1, fig. 6(a)].

The procedure described here is applicable to loosely coupled

resonators of rectangular cross section, is simple to use, and has
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Fig. 1. Side view of an interdigita.1 resonator
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Fig, 2. Plan view of an end resonator showing boondary conditions.

I
n

Iy

n!

z

Fig. 3. Geometry of the resonator end.
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given good results in

linear-phase filter.

II.

The cavity length is

Resonator equivalent circuit.

the design of a narrow-baud interdigital

THE GAP CAPACITANCE

l= Ao/(4@ (1)

where A ~ is the free-space wavelength at the desired resonant

frequency ~O.
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At resonance, the admittance at the node in Fig. 4 is zero.

Inspection of the equivalent circuit shows that the resonance

condition is satisfied when

27rfcglf=fo=l/{ zokln(27rf(~ – t?)/u)} If=fo (2)

where v = c/fi is the relative velocity of propagation in the

medium.

Equation (2) can be solved graphically or numerically for the

gap length g if the gap capacitance Cg can be expressed as a

function of g. The gap capacitance is a function of the geomet~

shown in Fig. 3. As mentioned, the ground plane spacing b, the
bar width w, and the thickness t, are determined by the desired
characteristic impedance Z.. When these parameters have been
selected, the gap width g is the variable which determines the
gap capacitance Cg, and thus the resonant frequency fo. The gap

capacitance can be expressed as

Cg= C1i- C[[. (3)

CI is defined as the capacitance in the gap region I formed by the

planes z = O, z = w, x = O, the vertical wall (x = g), the top plate,

and the bottom plate. CII is the capacitance in the remaining gap

region. Cr is given exactly by Getsinger’s odd-mode fringing

capacitance per unit length Cf~, as

CI = 2wC/0(2g/b, t/b) . (4)

In contrast to CI, which is composed of the capacitances due to

the two horizontal edges BC and AD plus the parallel plate

capacitance due to the resonator’s face, CII is composed of the

capacitances per unit length due to the vertical edges AB and CD,
namely Cf~l, and Cf~z, and Cf., the capacitance due to each of the
four corners. Thus

c,, = t ( C:”l + C;u, )+4C,C. (5)

In principle, the vertical edge capacitances C~U,,and C~u, CEUIbe

found as follows for an interdigital filter. For an end resonator,

as depicted in Fig. 2, one of the verticaJ edges will be adjacent to

a vertical electric wall due to the cavity side wall, and the

appropriate vertical edge fringing capacitance per unit length is

given exactly in terms of Getsinger’s odd-mode capacitance as

w/2
c;” = c;o(2g/(2s + w), w/(2s + w))– c= (6)

where s is the distance from the resonator edge to the end wall,

and w the resonator width. The second term is the parallel plate

capacitance due to the half of the resonator face associated with

the vertical edge, and must be subtracted from C~o since the face

capacitance is included in (4) for Cf.

For the other vertical edge, the vertical bounday condition is

defined by the physical spacing and electric excitation of the

adjacent resonator. In the equivalent circuit of an interdigital

filter, all resonators and unit elements are one quarter-wavelength

long at the center frequency and consequently the voltages on

adjacent resonators have phase difference I#J= Tr/2 at the center

frequency. Therefore, the vertical boundary is neither an electric

nor a magnetic wall and the resulting fringing capacitance must

be found by decomposing the excitation of the two resonators

into the even mode @= O, which results in a magnetic wall

halfway between the resonators, and the odd mode + = n, which

results in an electric wall halfway between the resonators, then

finding the corresponding fringing capacitances C~~ and C~O,and

finally combining them appropriately. Using this approach, the

vertical edge fringing capacitance per unit length at the center

TABLE I

THE THEORETICAL AND EXFERIMSNTAL RESONANT FREQUENCIES

OF AN INTERDIGITAL RESONATOR

(L)

3.0

4.5

C=/c cll/E

(mm) (nun)

-L
28.2 8.8

21.1 7.5

cg/E

(mm)

37.0

28.6

f. (MHz ) Diffe=
rence

Theo. Measu= %
ry red

1445 1430 1%

1522 1510 0.8%

.e=somb=15mm t=6inm t/b= O.4mm
w=8.8mm pl=p*=p=17mm Er=l zo=50n

frequency @= w/2 can be expressed as

c;”=; {c;m(2g/(P +w),w/(P+)v))
w/2

+c;o(2g/(P +w), w/( P+w))} –~y.

In this expression C~Ois Getsinger’s odd-mode fringing capaci-
tance per unit length from the vertical edge and associated half of
the resonator face and arises when o = n. Note that p is the

edge-to-edge spacing between adjacent resonators. Cf’~ is the

fringing capacitance for even-mode excitation @= O of the adja-

cent resonators and no straightforward method for obtaining this

capacitance appears to have been published, although Cohn’s

data [4] for semi-infinite coplanar plates could possibly be

adapted.

The purpose of the paper is to present a simple method, yet

sufficiently accurate for practical filter design, of estimating the

gap spacing g for a particular center frequency. Accordingly, the

following approximations are proposed to simplify computation

of C,l. Firstly, that the corner capacitances in (5) are negligible,

thus

q.= 0. (8)

Secondly, that C~m is approximately equal to C~Oin (7), in which

case

w/2
c;”=c/o(2g/(P +w), w/( P+w))–6y (9)

for a vertical edge adjacent to miother resonator. The second

approximation can be justified for loosely coupled resonators by

the intuitive argument that the end wall will play the dominant

role in the gap field distribution, whereas the distant electric or

magnetic walls till play a relatively insignificant role. Under

these assumptions, it follows from (3)–(9) that the gap capaci-

tance for an end resonator is approximated by

Cg = 2wC/o(2g/b, t/b)+ tc~O(2g/(2s + w), w/(2~ + w))

+tc/o(2g/(P +w), w/( P+w))–6; (lo)

with the symbols defined in Figs. 1 and 2.

Similarly, for a resonator located between two adjacent resona-

tors, the gap capacitance is approximated by

C.= 2wC;O(2g/b, t/b)+ tC;O(2g/(pl + w), w/(PI + w))

+ tc/o(2g/(p2+ w), w/( P2+W0)–~: (11)

where p ~ and pz are the inter-conductor spacings associated with

each of the vertical edges.
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Because a simple, closed-form expression for C/O as a function

of gap length g is not available, the value of g which satisfies (2)

has to be found iteratively as follows. For a particular value of g,

the odd-mode fringing capacitances C~O, which occur in (10) or

(11), are found from Getsinger’s Fig. 4, and the corresponding

gap capacitance Cg, calculated. Next, the frequency f., which

satisfies (2), is found graphically or numerically. The process is

repeated to produce a graph of resonant frequency f. as a

function of gap length g. The value of g which corresponds to the

desired resonant frequency can then be found from the graph.

III. EXPERIMENTAL RESULTS

The validity of the assumptions and approximations in the

procedure have been tested for a resonator located between two

adj scent resonators, in a 2-percent bandwidth interdigital linear-

phase filter of degree 6. The measured resonant frequency was

compared to the theoretical frequency, computed using (11), for

two gap lengths and Table I shows that good agreement was

obtained between theory and experiment.

IV. CONCLUSION

A simple procedure has been presented for computing the gap

width of the loosely coupled rectangular cross-sectional interdig-

ital resonator to obtain a specified resonant frequency. The

method uses a simple formula for the gap capacitance of the

resonator, based on Getsinger’s odd-mode fringing capacitance

data [1].

Experimental results suggest that the accuracy of the method is

of the order 1 percent. From Table I it is observed that the

theoretical resonant frequency is higher than the measured

frequency, which indicates that the theoretical gap capacitance Cg

is less than the actual capacitance. This could imply that the

corner capacitances are not negligible, as assumed in approxima-

tion (8).

The technique is expected to give best results for structures

that use loosely coupled bars, such as narrow-band filters. Tightly

coupled bars would have different even- and odd-mode fringing

capacitances, thus invalidating approximation (9). However, the

procedure should be adequate for most practical filter designs,

since tightly coupled bars are usually associated with wide-band

filters which are relatively insensitive to deviations from the ideal

circuit element values. A practical resonator design approach is to

design the gap width so that the theoretical resonant frequency is

1–2 percent higher than the desired frequency, and to provide a

capacitive tuning screw at the gap. The gap width should be

slightly larger than required when the tuning screw is flush with

the cavity wall. Therefore, the resonant frequency can be reduced

to the desired value by introducing the tuning screw into the gap,

thus reducing the effective gap width and increasing the gap

capacitance.
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A Design Method for Noncommensurate Broad-Band

Matching Networks

D.A. E. BLOMFIELD, A. G. WILLIAMSON, MEMBER, lEEE,

AND B. EGAN, MEMBER, IEEE

Abstract —A simple design method for broad-band ladder network im-

pedance transformers having noncommensnrate section lengths and pre-

dictable passband response is presented. Lirrdtations on section impedances

imposed by constrnctionaf constraints are more easily met than with

commensurate networks, and harmonically related passbands are largely

avoided. An example is presented.

I. INTRODUCTION

The short-step impedance transformer [1] and other broad-band

transmission-line networks based on rational insertion loss func-

tions employ commensurate (equal) element length sections. As a

consequence of this constraint, the frequency response is highly

periodic. Moreover, having specified the desired frequency re-

sponse, overall network length and circuit topology (i.e., number

of series/shunt elements etc.), the designer has little flexibility

with the range of element characteristic impedances required.

For example, in a particular application a designer might

consider the use of a series-cascaded commensurate network

because of its relative design and constructional simplicity. Hav-

ing specified the passband response and overall network length,

the minimum number of sections needed and thereafter the

section impedances can be determined. Because of the short

element lengths, a wide range of section impedances usually

results. The designer must then determine whether such a design

can be realized in practice, in the transmission-line type desired.

(A typical range feasible in microstrip, for example, is 20-110 Q,

while in slotline 55–300 Q, or coax 10–100 L?.) If the design is not

practical, then using commensurate elements, only a network of

greater complexity and/or length will provide the desired pass-

band performance.

On the other hand, noncommensurate networks have the

advantage of allowing greater design flexibility because the con-

straint that all elements have the same electrical length is re-

moved. A further advantage of such designs is that the periodic

recurrence of higher order passbands is largely avoided. However,

the circuit transfer function can no longer be described in terms

of rationaf functions. To date, no general theory has been pre-

sented for the synthesis of noncommensurate circuits with pre-

scribed gain functions.

In this paper, a design procedure is outlined enabling a non-

commensurate network to be derived from a commensurate pro-

totype. The procedure involves the use of a transformation which

keeps the fundamental passbartd frequency response of the de-

rived noncommensurate circuit almost identical to that of the

commensurate prototype. This is achieved while providing the

designer with greater flexibility in the choice of element imped-

ance levels.

II. DESIGN PROCEDURE

Having considered the conventional commensurate design and

found it to be unsuitable, a noncommensurate network may be

derived by considering pairs of sections of the commensurate
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